| Peer-Reviewed

Phytoremediation: Synergistic Effect of Thalia geniculata and Crassipes Eichhornia (Water Hyacinth) During Domestic Wastewater Treatment

Published in Plant (Volume 5, Issue 1)
Received: 17 October 2016     Accepted: 26 October 2016     Published: 15 November 2016
Views:       Downloads:
Abstract

The treatment of wastewater and removal of pollutants before discharge into natural water reserves, remain a major concern of the 21th century. Many of treatment techniques based on phytoremediation present limits regarding the treatment efficiency. In order to improve the efficiency of nutrients abatement in gray water, the synergy between Thalia geniculata and Crassipes Eichhornia (water hyacinth) was studied. Three treatments: Thalia geniculata (TG), water hyacinth (JE) and the combination of the two [Thalia geniculata and water hyacinth, (TJ)] in three different basins have been setup for the treatment of domestic wastewater. The water physicochemical parameters and nutrients concentrations were determined during the treatment process. After twelve days of treatment, results revealed a remarkable reduction of pollutants (NO3-, NTK and PO43-) in the basins TG and JE, with removal efficiencies of (68.62%, 55.71%, 23.55%) and (53.98%; 39.52%; 89.27%), respectively. As for the treatment combining the two species (TJ), the yield of pollutants abatement was 97.75% for NO3-, 82.83% for NTK and 24.84% for PO43-. An excellent treatment performance of the basin TJ was noticed regarding nitrogen removal against phosphate (PO43-) which was poorly removed. Accordingly, the results indicated an interesting synergistic effect between TG and JE; with the dominance of the TG tendency to remove nutrient (NO3-) from wastewater. The observed synergistic effect of Thalia geniculata and water hyacinth could be effective and promising for the sequestration of nitrogen in domestic wastewater within a couple of days. However, further studies are still needed to better understand the mechanism governing the removal of nitrogen to the detriment of phosphate when combining the two species.

Published in Plant (Volume 5, Issue 1)
DOI 10.11648/j.plant.20170501.11
Page(s) 1-8
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Phytoremediation, Domestic Wastewater, Synergy Effect, Pollutants, Thalia geniculata, Eichhornia Crassipes

References
[1] C. Kwatar, "Essai de dépollution des eaux usées de la mine de Draa Sfar par phytoépuration, « Mémoire de stage de fin d’études », Université Cadi Aynad, 2014.
[2] J. Casanova, N. Cagnimel, M. Devau, P. Pettenati, P. Stollstainer, BRGM."Recharge artificielle des eaux souterraines: état de l’art et perspectives." Rapport final. Convention Onema BRGM, 120p, 2013.
[3] D. Moctar," Approche hydrochimique et isotique de la relation eau de surface (nappe et du mode de recharge dans l’estuaire et la basse vallée du fleuve Sénégal", Thèse de doctorat de 3ème cycle en Géologie Appliquée, Université Cheith Anta Diop de Dakar, 217p, 2008.
[4] B. Odoulami,"Approvisionnement en eau potable dans les grandes villes du Bénin. Quelles politiques pour l’avenir ? Cas de Cotonou, Porto- Novo et Parakou", Mémoire de DEA en Gestion de l’Environnement, UAC Abomey-Calavi, 55p, 1999.
[5] Y. El Guamri, D. Belghyti, M. Cissé, K. El kharrin, I. Sylla, S. Raweh, H. Barkia, T. Hassouni, A. Jamber,"Etude physico- chimique et parasitologique des eaux usées destinées à l’irrigation du périmètre péri- urbain de Fouarat (Kenita, Maroc)", Agronomie Africaine, 19 (3): 251- 261, 2007.
[6] G. Baok,"Pollution des eaux et rivières et impact sur les populations riveraines: cas de la rivière Mgoua dans la zone industrielle de Douala –Bassa", Mémoire de Master en gestion de l’environnement, Université de Dschang-FASA, 2007.
[7] D. Kuitcha, A. L. F. Takoundjou, J. Ndjama,"Apport de l’hydrochimie et de l’isotope de l’environnement à la connaissance des ressources en eaux souterraines de Yaoundé, Cameroun", Jounal of Applied Bioscience, 67: pp. 5194-5208, 2013.
[8] MSP/MEHU,"Développement du secteur de l’Assainissement", Document de Politique Nationale, Programme d’Alimentation en Eau et d’Assainissement, Afrique de l’Ouest, pp. 11–32, 1995.
[9] A. Filali, H. Hauduc, L. Rieger, L. Philippe, F. Nauleau, S. Gillot," Analyse et consolidation de données de fonctionnement des stations d’épuration: une étude de cas", Techniques sciences méthodes, génie urbain génie rural, n° 12: pp. 105-135, 2015.
[10] R. Gourdon, M. Kanita, M. Gautier, B. Kimi, P. Mickel,"Traitement des eaux usées domestiques par une installation de filtres de roseaux à écoulement vertical C, N, P et micropolluants", Colloque International E3D, Lomé, 2016.
[11] E. Demers, "Effet des macrophytes aquatiques sur le traitement d’eau contaminée à l’ACC et au PCP", Mémoire d’obtention du grade de Maîtrise en sciences biologiques, Université de Montréal, janvier 2015.
[12] A. V. O. Akowanou, "Phytoépuration des eaux usées domestiques: Evaluation des paramètres de performances par combinaison de trois macrophytes flottants", Mémoire de master en environnement, 2012.
[13] M. P. Aina, N. M. Kpondjo, J. Adounkpe, D. Chougourou, M. Moudochirou, “Study of the purification efficiencies of their floating macrophytes In wastewater treatment”, Research Journal of chemical Sciences; Vol. 1 (3): pp. 2319-1414, October 2012.
[14] M. Seidl, J. M. Mouchel,"Valorisation des eaux usées par lagunage dans les pays en voie de développement", Programme de gestion durable des déchets et de l’assainissement urbain, rapport final, 40p, 2003.
[15] M. Abissy, L. Mandi,"Utilisation des plantes aquatiques enracinées pour le traitement des eaux usées urbaines: Cas du roseau", Rev. Sci. Eau, pp. 285-315, 1999.
[16] P. Mollé, M. Boucher, C. Barbier, S. Lapon, C. Lacour,"Conception et exploitation des stations de traitement des eaux usées des petites et moyennes collectivités (EPNAC), rapport final atelier thématique EPNAC << Guide d’exploitation>>, action 40-2, 2015.
[17] T. Fujita, “Environnemental technology: water purification, soil remediation, air cleaning and recycling”, Research into Artificats Center for Engineering, University of Tokyo, Japan, 2015.
[18] C. Bourtin, O. Caquel, N. Dimastromateo, J. Dumaine, G. Fermandes, C. Gerrassi, S. Parotin, C. Tscherter,"Ouvrages de traitement par filtrees plantées de roseaux", Guide d’exploitation, ONEMA (EPNAC), janvier 2015.
[19] N. F. Allouche,"La phytoremediation pour la dépollution des eaux usées", Bulletin des Energies Renouvelables, N°10, décembre 2006.
[20] C. Eme, P. Mollé,"Stockage des eaux usées traitées en vue de leur réutilisation", Rapport final IRSTEA / EPNAC/ ONEMA, décembre 2013.
[21] S. Yapoga, Y. B. Ossey, V. Kouamé, “Phytoremediation of zinc, cadmium, copper and chrome from industrial wastewater by Eichhorniacrassipes”, International Journal of Conservation Science, Volume 4, Issue 1: 81-86, January-March 2013.
[22] F. Yovo, B. Dimon, C. E. Azandegbe, F. Suanon, E. Sagbo, D. Mama, M. Aina, “Phytoremediation: Investigation and valorization of purifying power of Thalia geniculatain for domestic wastewater treatment”, Research Journal of Chemical Sciences, Vol. 5 (12): 1-6, 2015.
[23] Q. Yi, Y. Kim, M. Tateda,”Evaluation of nitrogen reduction in water hyacinth ponds integrated with waste stabilization ponds”. Desalination, Vol. 249 No. 2: pp. 528-534, 2009.
[24] L. Jianbo, F. Zhihu, Y. Zhaozheng,” Performance of a water hyacinth (Eichhornia crassipes) system in the treatement of wastewater from duck farm and the effects of using water hyacinth as duck feed”, Journal of environnement sciences, 20: pp. 513-519, 2007.
[25] R. F. Polomski, G. B. Douglas, T. Whitwell, “Differential Nitrogen and Phosphorus Recovery by Five Aquatic Garden Species in Laboratory-scale Subsurface-constructed Wetlands, Clemson University, HortScience, 43 (3): pp. 868-874, 2008.
[26] D. Mama, "Méthodologie et résultats du diagnostic de l’eutrophisation du lac nokoué (Bénin)", Thèse de doctorat, Université de Limoges, 141p, 2010.
[27] J. N. Louvet, "Etude des variations en oxygène dissout rencontrées dans les systèmes d’aération en épuration des eaux et mise au point d’un réacteur de type scale-down", Mémoire de Master complémentaire en génie sanitaire, 2007.
[28] G. Deronzier, S. Schétrite, Y. Racault, J. P. Canler, A. Liénard, A. Héduit, P. Duchène, "Traitement de l'azote dans les stations d'épuration biologique des petites collectivités", Document technique FNDAE n° 25, 2001.
[29] J. Chaib, J-P. Thorez, "L’épuration des eaux usées par les plantes", « Connaître pour agir », 2002.
[30] A. E. I. Nougbode, P. Sessou, A. K. Youssao, C. P. Agbangnan, D. Mama, K. C. D. Sohounhloue, "Évaluation de gel d’Aloevera en feuilles comme un floculant naturel: criblage phytochimique et élimination de la turbidité des essais d'eau par coagulation floculation", Res. J. Sci., 5 (1): 9-15, 2016.
[31] M. R. Toklo, R. G. Josse, N. Topanou, A. F. C. Togbé, P. Dossou- Yovo, B. Coulomb," Caractérisation physico- chimique des lixiviats d’une décharge: cas du lieu d’enfouissement sanitaire de Oussè – Ouidah (Sud Bénin)", International Journal of Innovation and Applied Studies, Vol 13: pp. 921–928, décembre 2015.
[32] M. Kleche,"Utilisation des systèmes biologiques dans l’épuration des eaux usées cas de la région d'Annaba", Thèse en vue de l’obtention d’un diplôme de doctorat spécialité: biologie végétale, Université Badji Mokhtar – Annaba, 2003.
[33] BEIERE (Bureau d’Etudes Industrielles Energies Renouvelables et Environnement), "Description et principe de fonctionnement d'un filtre planté de roseaux à écoulement vertical (FPRV)", Eco-gestion d'habitats, 2009.
[34] DRELB (Direction Régionale de l’Environnement et du Logement Bretagne), "Etude d’impact du traitement des effluents urbains", Fiche de cadrage de l’autorité environnementale, 2012.
[35] J. Sibony et B. Bigot, "Traitement des eaux usées urbaines", Direction technique: Omnium de Traitement et de Valorisation (OTV), 1993.
Cite This Article
  • APA Style

    Franck Yovo, Biaou Dimon, Fidèle Suanon, Coffi Azandegbe Eni, Ignace Chabi Agani, et al. (2016). Phytoremediation: Synergistic Effect of Thalia geniculata and Crassipes Eichhornia (Water Hyacinth) During Domestic Wastewater Treatment. Plant, 5(1), 1-8. https://doi.org/10.11648/j.plant.20170501.11

    Copy | Download

    ACS Style

    Franck Yovo; Biaou Dimon; Fidèle Suanon; Coffi Azandegbe Eni; Ignace Chabi Agani, et al. Phytoremediation: Synergistic Effect of Thalia geniculata and Crassipes Eichhornia (Water Hyacinth) During Domestic Wastewater Treatment. Plant. 2016, 5(1), 1-8. doi: 10.11648/j.plant.20170501.11

    Copy | Download

    AMA Style

    Franck Yovo, Biaou Dimon, Fidèle Suanon, Coffi Azandegbe Eni, Ignace Chabi Agani, et al. Phytoremediation: Synergistic Effect of Thalia geniculata and Crassipes Eichhornia (Water Hyacinth) During Domestic Wastewater Treatment. Plant. 2016;5(1):1-8. doi: 10.11648/j.plant.20170501.11

    Copy | Download

  • @article{10.11648/j.plant.20170501.11,
      author = {Franck Yovo and Biaou Dimon and Fidèle Suanon and Coffi Azandegbe Eni and Ignace Chabi Agani and Valentin Wotto},
      title = {Phytoremediation: Synergistic Effect of Thalia geniculata and Crassipes Eichhornia (Water Hyacinth) During Domestic Wastewater Treatment},
      journal = {Plant},
      volume = {5},
      number = {1},
      pages = {1-8},
      doi = {10.11648/j.plant.20170501.11},
      url = {https://doi.org/10.11648/j.plant.20170501.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.plant.20170501.11},
      abstract = {The treatment of wastewater and removal of pollutants before discharge into natural water reserves, remain a major concern of the 21th century. Many of treatment techniques based on phytoremediation present limits regarding the treatment efficiency. In order to improve the efficiency of nutrients abatement in gray water, the synergy between Thalia geniculata and Crassipes Eichhornia (water hyacinth) was studied. Three treatments: Thalia geniculata (TG), water hyacinth (JE) and the combination of the two [Thalia geniculata and water hyacinth, (TJ)] in three different basins have been setup for the treatment of domestic wastewater. The water physicochemical parameters and nutrients concentrations were determined during the treatment process. After twelve days of treatment, results revealed a remarkable reduction of pollutants (NO3-, NTK and PO43-) in the basins TG and JE, with removal efficiencies of (68.62%, 55.71%, 23.55%) and (53.98%; 39.52%; 89.27%), respectively. As for the treatment combining the two species (TJ), the yield of pollutants abatement was 97.75% for NO3-, 82.83% for NTK and 24.84% for PO43-. An excellent treatment performance of the basin TJ was noticed regarding nitrogen removal against phosphate (PO43-) which was poorly removed. Accordingly, the results indicated an interesting synergistic effect between TG and JE; with the dominance of the TG tendency to remove nutrient (NO3-) from wastewater. The observed synergistic effect of Thalia geniculata and water hyacinth could be effective and promising for the sequestration of nitrogen in domestic wastewater within a couple of days. However, further studies are still needed to better understand the mechanism governing the removal of nitrogen to the detriment of phosphate when combining the two species.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Phytoremediation: Synergistic Effect of Thalia geniculata and Crassipes Eichhornia (Water Hyacinth) During Domestic Wastewater Treatment
    AU  - Franck Yovo
    AU  - Biaou Dimon
    AU  - Fidèle Suanon
    AU  - Coffi Azandegbe Eni
    AU  - Ignace Chabi Agani
    AU  - Valentin Wotto
    Y1  - 2016/11/15
    PY  - 2016
    N1  - https://doi.org/10.11648/j.plant.20170501.11
    DO  - 10.11648/j.plant.20170501.11
    T2  - Plant
    JF  - Plant
    JO  - Plant
    SP  - 1
    EP  - 8
    PB  - Science Publishing Group
    SN  - 2331-0677
    UR  - https://doi.org/10.11648/j.plant.20170501.11
    AB  - The treatment of wastewater and removal of pollutants before discharge into natural water reserves, remain a major concern of the 21th century. Many of treatment techniques based on phytoremediation present limits regarding the treatment efficiency. In order to improve the efficiency of nutrients abatement in gray water, the synergy between Thalia geniculata and Crassipes Eichhornia (water hyacinth) was studied. Three treatments: Thalia geniculata (TG), water hyacinth (JE) and the combination of the two [Thalia geniculata and water hyacinth, (TJ)] in three different basins have been setup for the treatment of domestic wastewater. The water physicochemical parameters and nutrients concentrations were determined during the treatment process. After twelve days of treatment, results revealed a remarkable reduction of pollutants (NO3-, NTK and PO43-) in the basins TG and JE, with removal efficiencies of (68.62%, 55.71%, 23.55%) and (53.98%; 39.52%; 89.27%), respectively. As for the treatment combining the two species (TJ), the yield of pollutants abatement was 97.75% for NO3-, 82.83% for NTK and 24.84% for PO43-. An excellent treatment performance of the basin TJ was noticed regarding nitrogen removal against phosphate (PO43-) which was poorly removed. Accordingly, the results indicated an interesting synergistic effect between TG and JE; with the dominance of the TG tendency to remove nutrient (NO3-) from wastewater. The observed synergistic effect of Thalia geniculata and water hyacinth could be effective and promising for the sequestration of nitrogen in domestic wastewater within a couple of days. However, further studies are still needed to better understand the mechanism governing the removal of nitrogen to the detriment of phosphate when combining the two species.
    VL  - 5
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Physical Chemistry, Faculty of Sciences and Techniques University of Abomey-Calavi (LCP/ FAST/UAC), Cotonou, Republic of Benin

  • Laboratory of Physical Chemistry, Faculty of Sciences and Techniques University of Abomey-Calavi (LCP/ FAST/UAC), Cotonou, Republic of Benin

  • Laboratory of Physical Chemistry, Faculty of Sciences and Techniques University of Abomey-Calavi (LCP/ FAST/UAC), Cotonou, Republic of Benin

  • Laboratory of Physical Chemistry, Faculty of Sciences and Techniques University of Abomey-Calavi (LCP/ FAST/UAC), Cotonou, Republic of Benin

  • Laboratory of Physical Chemistry, Faculty of Sciences and Techniques University of Abomey-Calavi (LCP/ FAST/UAC), Cotonou, Republic of Benin

  • Laboratory of Physical Chemistry, Faculty of Sciences and Techniques University of Abomey-Calavi (LCP/ FAST/UAC), Cotonou, Republic of Benin

  • Sections