To achieve structural integrity, serviceability, and economy of buildings, national and international building standards are used for dimensioning and proportioning of structural members. Building codes may be amended due to, the existence of new construction materials, technologies, and structures, and to improve earlier gaps. Ethiopia has experienced three building codes in the last 40 years. Those codes were the Ethiopian Standard Code of Practice, ESCP 1983-1995, Ethiopian Building Code of Standard, EBCS-1995, and the Ethiopian Standard, ES EN 2015. Design code compliance design and supervision of buildings is one of the major ways to achieve the planning, design, construction, service life as well as overall performance of projects. This study is conducted on the depth determination of an interior RC beam with different span and steel grades under EBCS-1995 and ES EN-2015 design codes. The result of this study proves that EBCS 1995 is uneconomical for shear and moment design for longer spans, and preferable for smaller spans, while ES EN 2015 provides smaller serviceable depth and deflection and maintains economical design for longer spans. Construction professionals need to understand the basic purpose of code amendment and should use the new design code as a major design reference and the earlier code accordingly.
Published in | American Journal of Civil Engineering (Volume 12, Issue 2) |
DOI | 10.11648/j.ajce.20241202.12 |
Page(s) | 66-75 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
Effective Depth, Serviceability Depth, Ultimate Depth, Span-to-Depth Ratio, Design Code
Beam type | Simply supported span | End Span | interior span | Cantilever span |
---|---|---|---|---|
Βα | 20 | 24 | 28 | 10 |
Beam Type | Simply Supported Span | End Span | Interior Span | Cantilever Span |
---|---|---|---|---|
K | 1.0 | 1.3 | 1.5 | 0.4 |
2.1. Model Specification
2.2. Comparative Parameters
Comparative Parameters | EBCS-1995 | ES EN-2015 | |
---|---|---|---|
Span-to-depth ratio | L/d | 400βα/(160+0.6fyk) | K [11+1.5√𝑓𝑐𝑘∗ +3.2√𝑓𝑐𝑘∗( −1)3/2] |
Serviceable depth | D | L/(L/d) | L/(L/d) |
Total depth | D | d+CC+ɸs+ɸL/2 | d+CC+ɸs+ɸL/2 |
Total width | B | D/2 | D/2 |
Dead load | DL | ϒc*D*b | ϒc*D*b |
Live load | LL | Depends on building's function | Depends on building's function |
Design load | W=Ed | 1.3DL+1.3SUPDL+1.6LL | 1.35DL+1.35SUPDL+1.5LL |
Service load | w | DL+LL | DL+LL |
Moment of inertia | I | bD3/12 | bD3/12 |
Elastic Modulus | Ecm | 9.5(fck+8)1/3 | 22((cm/10))0.3 |
Calculated Deflection | Δcal | wl4/384EI | wl4/384EI |
Allowable Deflection | Δall | Le/200 | Le/250 |
Maximum Moment | Max | Wl2/12 | Wl2/12 |
Maximum Shear | Vmax | Wl/2 | Wl/2 |
Critical design shear | Vcr | Vmax(L-2d)/L, d in m | Vmax(L-2d)/L, d in m |
Flexural Depth | du |
|
|
L(m) | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 |
---|---|---|---|---|---|---|---|---|---|---|---|
L/d | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 |
d(mm) | 91.07 | 106.25 | 121.43 | 136.61 | 151.79 | 166.96 | 182.14 | 197.32 | 212.50 | 227.68 | 242.86 |
D(mm) | 134.07 | 149.25 | 164.43 | 179.61 | 194.79 | 209.96 | 225.14 | 240.32 | 255.50 | 270.68 | 285.86 |
b(mm) | 67.04 | 74.63 | 82.21 | 89.80 | 97.39 | 104.98 | 112.57 | 120.16 | 127.75 | 135.34 | 142.93 |
DL(KN/m) | 0.22 | 0.28 | 0.34 | 0.40 | 0.47 | 0.55 | 0.63 | 0.72 | 0.82 | 0.92 | 1.02 |
LL (KN/m) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Ed (KN/m) | 17.09 | 17.16 | 17.24 | 17.32 | 17.42 | 17.52 | 17.62 | 17.74 | 17.86 | 17.99 | 18.13 |
w (KN/m) | 12.22 | 12.28 | 12.34 | 12.40 | 12.47 | 12.55 | 12.63 | 12.72 | 12.82 | 12.92 | 13.02 |
I (mm4) | 1E+07 | 2E+07 | 3E+07 | 4E+07 | 6E+07 | 8E+07 | 1E+08 | 1E+08 | 2E+08 | 2E+08 | 3E+08 |
Δall(mm) | 15 | 17.5 | 20 | 22.5 | 25 | 27.5 | 30 | 32.5 | 35 | 37.5 | 40 |
Δcal(mm) | 6.60 | 8.00 | 9.31 | 10.53 | 11.67 | 12.74 | 13.73 | 14.67 | 15.56 | 16.41 | 17.21 |
Mmax(KNm) | 12.82 | 17.52 | 22.99 | 29.23 | 36.28 | 44.16 | 52.87 | 62.45 | 72.93 | 84.33 | 96.68 |
Vmax(KN) | 25.64 | 30.03 | 34.48 | 38.98 | 43.54 | 48.17 | 52.87 | 57.65 | 62.51 | 67.46 | 72.51 |
Vcr(KN) | 24.08 | 28.21 | 32.39 | 36.61 | 40.90 | 45.25 | 49.66 | 54.15 | 58.72 | 63.37 | 68.11 |
du(mm) | 239.11 | 264.94 | 289.12 | 311.98 | 333.75 | 354.62 | 374.73 | 394.21 | 413.15 | 431.63 | 449.72 |
L(m) | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 |
---|---|---|---|---|---|---|---|---|---|---|---|
L/d | 44.27 | 44.27 | 44.27 | 44.27 | 44.27 | 44.27 | 44.27 | 44.27 | 44.27 | 41.32 | 38.74 |
d(mm) | 67.77 | 79.06 | 90.35 | 101.65 | 112.94 | 124.24 | 135.53 | 146.82 | 158.12 | 181.51 | 206.52 |
D(mm) | 115.77 | 127.06 | 138.35 | 149.65 | 160.94 | 172.24 | 183.53 | 194.82 | 206.12 | 229.51 | 254.52 |
b(mm) | 57.88 | 63.53 | 69.18 | 74.82 | 80.47 | 86.12 | 91.77 | 97.41 | 103.06 | 114.76 | 127.26 |
DL(KN/m) | 0.17 | 0.20 | 0.24 | 0.28 | 0.32 | 0.37 | 0.42 | 0.47 | 0.53 | 0.66 | 0.81 |
LL (KN/m) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Ed (KN/m) | 17.03 | 17.07 | 17.12 | 17.18 | 17.24 | 17.30 | 17.37 | 17.44 | 17.52 | 17.69 | 17.89 |
w (KN/m) | 12.17 | 12.20 | 12.24 | 12.28 | 12.32 | 12.37 | 12.42 | 12.47 | 12.53 | 12.66 | 12.81 |
I (mm4) | 7.5E+6 | 1.1E+7 | 1.5E+7 | 2.1E+7 | 2.8E+7 | 4E+7 | 4.7E+7 | 6.0E+7 | 7.5E+7 | 1.2E+8 | 1.7E+8 |
Δall(mm) | 12.00 | 14.00 | 16.00 | 18.00 | 20.00 | 22.00 | 24.00 | 26.00 | 28.00 | 30.00 | 32.00 |
Δcal(mm) | 11.43 | 14.64 | 17.82 | 20.92 | 23.92 | 26.80 | 29.56 | 32.20 | 34.73 | 30.07 | 26.05 |
Mmax(KNm) | 12.77 | 17.43 | 22.83 | 28.99 | 35.91 | 43.61 | 52.11 | 61.41 | 71.53 | 82.92 | 95.43 |
Vmax(KN) | 25.54 | 29.88 | 34.25 | 38.65 | 43.09 | 47.58 | 52.11 | 56.68 | 61.31 | 66.33 | 71.57 |
Vcr(KN) | 24.39 | 28.53 | 32.70 | 36.90 | 41.15 | 45.43 | 49.75 | 54.12 | 58.54 | 63.12 | 67.88 |
du(mm) | 257.26 | 286.88 | 314.66 | 340.92 | 365.89 | 389.78 | 412.73 | 434.87 | 456.31 | 465.58 | 474.31 |
For steel grade of fyk=300mpa
L(m) | do | duo | dn | dun | Δcal,o | Δall,o | Δcal,n | Δall,n | Vcr,o | Vcr,n | Mmax,o | Mmax,n |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 91.07 | 239.11 | 67.77 | 257.26 | 6.605 | 15 | 11.43 | 12 | 24.08 | 24.39 | 12.82 | 12.77 |
3.5 | 106.25 | 264.94 | 79.06 | 286.88 | 8.003 | 17.5 | 14.64 | 14 | 28.21 | 28.53 | 17.52 | 17.43 |
4 | 121.43 | 289.12 | 90.35 | 314.66 | 9.312 | 20 | 17.82 | 16 | 32.39 | 32.70 | 22.99 | 22.83 |
4.5 | 136.61 | 311.98 | 101.65 | 340.92 | 10.533 | 22.5 | 20.92 | 18 | 36.61 | 36.90 | 29.77 | 28.99 |
5 | 151.79 | 333.75 | 112.94 | 365.89 | 11.672 | 25 | 23.92 | 20 | 40.90 | 41.15 | 36.28 | 35.91 |
5.5 | 166.96 | 354.62 | 124.24 | 389.78 | 12.736 | 27.5 | 26.80 | 22 | 45.25 | 45.43 | 44.16 | 43.61 |
6 | 182.14 | 374.73 | 135.53 | 412.73 | 13.734 | 30 | 29.56 | 24 | 49.66 | 49.75 | 52.87 | 52.11 |
6.5 | 197.32 | 394.21 | 146.82 | 434.87 | 14.673 | 32.5 | 32.20 | 26 | 54.15 | 54.12 | 62.45 | 61.41 |
7 | 212.50 | 413.15 | 158.12 | 456.31 | 15.562 | 35 | 34.73 | 28 | 58.72 | 58.54 | 72.93 | 71.53 |
7.5 | 227.68 | 431.63 | 181.51 | 465.58 | 16.407 | 37.5 | 30.07 | 30 | 63.37 | 63.12 | 84.33 | 82.92 |
8 | 242.86 | 449.72 | 206.52 | 474.31 | 17.215 | 40 | 26.05 | 32 | 68.11 | 67.88 | 96.68 | 95.43 |
For steel grade of fyk=400mpa
L(m) | do | duo | dn | dun | Δcal,o | Δall,o | Δcal,n | Δall,n | Vcr,o | Vcr,n | Mmax,o | Mmax,n |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 107.14 | 226.44 | 90.35 | 236.00 | 4.219 | 15 | 5.64 | 12 | 23.91 | 24.14 | 12.87 | 12.84 |
3.5 | 125.00 | 250.42 | 105.41 | 262.03 | 5.015 | 17.5 | 6.94 | 14 | 28.05 | 28.28 | 17.62 | 17.56 |
4 | 142.86 | 272.91 | 120.47 | 286.45 | 5.748 | 20 | 8.18 | 16 | 32.24 | 32.48 | 23.15 | 23.04 |
4.5 | 160.71 | 294.21 | 135.53 | 309.55 | 6.424 | 22.5 | 9.35 | 18 | 36.51 | 36.72 | 29.49 | 29.31 |
5 | 178.57 | 314.55 | 150.59 | 331.57 | 7.049 | 25 | 10.46 | 20 | 40.85 | 41.03 | 36.66 | 36.39 |
5.5 | 196.43 | 334.12 | 165.65 | 352.69 | 7.631 | 27.5 | 11.50 | 22 | 45.28 | 45.41 | 44.70 | 44.29 |
6 | 214.29 | 353.04 | 180.71 | 373.06 | 8.176 | 30 | 12.49 | 24 | 49.80 | 49.85 | 53.63 | 53.05 |
6.5 | 232.14 | 371.44 | 195.77 | 392.79 | 8.691 | 32.5 | 13.42 | 26 | 54.41 | 54.37 | 63.48 | 62.68 |
7 | 250.00 | 389.40 | 210.83 | 411.98 | 9.179 | 35 | 14.31 | 28 | 59.13 | 58.98 | 74.30 | 73.22 |
7.5 | 267.86 | 407.00 | 242.02 | 420.34 | 9.645 | 37.5 | 12.16 | 30 | 63.97 | 63.91 | 86.11 | 85.40 |
8 | 285.71 | 424.30 | 275.36 | 428.62 | 10.094 | 40 | 10.39 | 32 | 68.92 | 69.15 | 98.96 | 99.01 |
For steel grade of fyk=500mpa
L(m) | do | duo | dn | dun | Δcal,o | Δall,o | Δcal,n | Δall,n | Vcr,o | Vcr,n | Mmax,o | Mmax,n |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 123.21 | 215.73 | 112.94 | 219.54 | 2.82 | 15.00 | 3.10 | 12.00 | 23.75 | 23.91 | 12.94 | 12.93 |
3.5 | 143.75 | 238.26 | 131.77 | 262.03 | 3.31 | 17.50 | 3.71 | 14.00 | 27.90 | 27.88 | 17.73 | 17.71 |
4 | 164.29 | 259.43 | 150.59 | 265.25 | 3.75 | 20.00 | 4.28 | 16.00 | 32.12 | 32.30 | 23.33 | 23.29 |
4.5 | 184.82 | 279.55 | 169.41 | 286.28 | 4.15 | 22.50 | 4.81 | 18.00 | 36.44 | 36.61 | 29.77 | 29.70 |
5 | 205.36 | 298.83 | 188.24 | 306.40 | 4.52 | 25.00 | 5.31 | 20.00 | 40.85 | 41.01 | 37.09 | 36.96 |
5.5 | 225.89 | 317.44 | 207.06 | 325.78 | 4.87 | 27.50 | 5.77 | 22.00 | 45.37 | 45.51 | 45.31 | 45.12 |
6 | 246.43 | 335.51 | 225.88 | 344.58 | 5.19 | 30.00 | 6.21 | 24.00 | 50.01 | 50.12 | 54.48 | 54.20 |
6.5 | 266.96 | 353.15 | 244.71 | 362.88 | 5.50 | 32.50 | 6.62 | 26.00 | 54.77 | 54.83 | 64.65 | 64.24 |
7 | 287.50 | 370.45 | 263.53 | 380.79 | 5.80 | 35.00 | 7.02 | 28.00 | 59.67 | 59.67 | 75.85 | 75.29 |
7.5 | 308.04 | 387.48 | 302.52 | 389.15 | 6.08 | 37.50 | 5.91 | 30.00 | 64.72 | 65.07 | 88.14 | 88.47 |
8 | 328.57 | 404.29 | 344.20 | 397.81 | 6.36 | 40.00 | 5.02 | 32.00 | 69.92 | 70.91 | 101.57 | 103.44 |
For steel grade of fyk=600mpa
L(m) | do | duo | dn | dun | Δcal,o | Δall,o | Δcal,n | Δall,n | Vcr,o | Vcr,n | Mmax,o | Mmax,n |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 139.29 | 206.55 | 135.53 | 206.36 | 1.96 | 15.00 | 1.85 | 12.00 | 23.59 | 23.70 | 13.00 | 13.03 |
3.5 | 162.50 | 227.91 | 158.12 | 228.15 | 2.27 | 17.50 | 2.17 | 14.00 | 27.76 | 27.88 | 17.85 | 17.88 |
4 | 185.71 | 248.05 | 180.71 | 248.70 | 2.55 | 20.00 | 2.47 | 16.00 | 32.02 | 32.17 | 23.53 | 23.58 |
4.5 | 208.93 | 267.25 | 203.30 | 268.30 | 2.81 | 22.50 | 2.74 | 18.00 | 36.40 | 36.57 | 30.09 | 30.15 |
5 | 232.14 | 285.72 | 225.88 | 287.15 | 3.04 | 25.00 | 2.99 | 20.00 | 40.89 | 41.08 | 37.56 | 37.64 |
5.5 | 255.36 | 303.62 | 248.47 | 305.41 | 3.26 | 27.50 | 3.23 | 22.00 | 45.52 | 45.74 | 46.00 | 46.09 |
6 | 278.57 | 321.08 | 271.06 | 323.22 | 3.47 | 30.00 | 3.46 | 24.00 | 50.29 | 50.53 | 55.44 | 55.55 |
6.5 | 301.79 | 338.20 | 293.65 | 340.67 | 3.67 | 32.50 | 3.67 | 26.00 | 55.23 | 55.49 | 65.95 | 66.09 |
7 | 325.00 | 355.07 | 316.24 | 357.86 | 3.86 | 35.00 | 3.88 | 28.00 | 60.33 | 60.61 | 77.59 | 77.74 |
7.5 | 348.21 | 371.74 | 363.03 | 366.70 | 4.05 | 37.50 | 3.26 | 30.00 | 65.61 | 66.56 | 90.41 | 92.11 |
8 | 371.43 | 388.28 | 413.05 | 376.17 | 4.23 | 40.00 | 2.77 | 32.00 | 71.09 | 73.13 | 104.49 | 108.73 |
fyk=300mpa | fyk=400mpa | fyk=500mpa | fyk=600mpa | |||||
---|---|---|---|---|---|---|---|---|
L(m) | l/d(o) | l/d(n) | l/d(o) | l/d(n) | l/d(o) | l/d(n) | l/d(o) | l/d(n) |
3 | 32.94 | 44.27 | 28.00 | 33.20 | 24.35 | 26.56 | 21.54 | 22.14 |
3.5 | 32.94 | 44.27 | 28.00 | 33.20 | 24.35 | 26.56 | 21.54 | 22.14 |
4 | 32.94 | 44.27 | 28.00 | 33.20 | 24.35 | 26.56 | 21.54 | 22.14 |
4.5 | 32.94 | 44.27 | 28.00 | 33.20 | 24.35 | 26.56 | 21.54 | 22.14 |
5 | 32.94 | 44.27 | 28.00 | 33.20 | 24.35 | 26.56 | 21.54 | 22.14 |
5.5 | 32.94 | 44.27 | 28.00 | 33.20 | 24.35 | 26.56 | 21.54 | 22.14 |
6 | 32.94 | 44.27 | 28.00 | 33.20 | 24.35 | 26.56 | 21.54 | 22.14 |
6.5 | 32.94 | 44.27 | 28.00 | 33.20 | 24.35 | 26.56 | 21.54 | 22.14 |
7 | 32.94 | 44.27 | 28.00 | 33.20 | 24.35 | 26.56 | 21.54 | 22.14 |
7.5 | 32.94 | 41.32 | 28.00 | 30.99 | 24.35 | 24.79 | 21.54 | 20.66 |
8 | 32.94 | 38.74 | 28.00 | 29.05 | 24.35 | 23.24 | 21.54 | 19.37 |
[1] | W. Ren, H. Zhang, and H. Liu, “Research on Bending Performance of RC Beams Reinforced by Prestressed TRM,” J. Phys. Conf. Ser., vol. 2158, no. 1, 2022, |
[2] | A. Hamoda, A. Basha, S. Fayed, and K. Sennah, “Experimental and Numerical Assessment of Reinforced Concrete Beams with Disturbed Depth,” Int. J. Concr. Struct. Mater., vol. 13, no. 1, 2019, |
[3] | M. D. Kotsovos and M. N. Pavlović, “Size effects in beams with small shear span-to-depth ratios,” Comput. Struct., vol. 82, no. 2–3, pp. 143–156, 2004, |
[4] | R. Z. Al-Rousan and M. A. Issa, “The effect of beam depth on the shear behavior of reinforced concrete beams externally strengthened with carbon fiber–reinforced polymer composites,” Adv. Struct. Eng., vol. 19, no. 11, pp. 1769–1779, 2016, |
[5] | V. S. Sohoni and M. R. Shiyekar, “Effect of Change in Grade of Concrete on the Composite Members of a Framed Structure,” vol. 2, no. 6, pp. 35–41, 2012. |
[6] | B. C. Zega, H. Prayuda, and D. P. Mulia, “Effect of Cross Section Dimensions to Stiffness and Deflection on Reinforced Concrete Beams,” vol. 196, no. Ijcse, pp. 259–266, 2020, |
[7] | M. H. Fahmi and A. Z. Saber, “Modified Minimum depth-span ratio of beams and slabs,” Int. J. Emerg. Trends Eng. Res., vol. 8, no. 9, pp. 5571–5580, 2020, |
[8] | F. A. Faroque and R. Kumar, “Comparison of design calculations of Deep beams using various International Codes,” Int. J. Civ. Eng., vol. 2, no. 10, pp. 18–26, 2015, |
[9] | I. F. Kara and C. Dundar, “Effect of loading types and reinforcement ratio on an effective moment of inertia and deflection of a reinforced concrete beam,” Adv. Eng. Softw., vol. 40, no. 9, pp. 836–846, 2009, |
[10] | B. Hu and Y. F. Wu, “Effect of shear span-to-depth ratio on shear strength components of RC beams,” Eng. Struct., vol. 168, no. May, pp. 770–783, 2018, |
[11] | A. K. Samal and T. E. Rao, “Analysis of Stress and Deflection of Cantilever Beam and its Validation Using ANSYS,” J. Eng. Res. Appl. |
[12] | P. R. Pokhrel and B. Lamsal, “Modeling and parameter analysis of deflection of a beam,” Bibechana, vol. 18, no. 1, pp. 75–82, 2021, |
[13] | T. G. Wakjira and U. Ebead, “Shear span-to-depth ratio effect on steel reinforced grout strengthened reinforced concrete beams,” Eng. Struct., vol. 216, no. February, p. 110737, 2020, |
[14] | A. Z. dan D. Yusri, “EBCS-2 Structural Use of concrete,” J. Ilmu Pendidik., vol. 7, no. 2, pp. 809–820, 2020. |
[15] | E. 1992-1-1, “Compulsory Ethiopian Standard Design of Concrete Structures-Part 1-1 : General rules and rules for buildings,” Ces En 1994-1-1, vol. PART 1-1, 2015. |
APA Style
Yimer, A. M. (2024). A Comparative Study of Rectangular Beam Depth Effects Under EBCS-1995 and ES EN-2015 Codes. American Journal of Civil Engineering, 12(2), 66-75. https://doi.org/10.11648/j.ajce.20241202.12
ACS Style
Yimer, A. M. A Comparative Study of Rectangular Beam Depth Effects Under EBCS-1995 and ES EN-2015 Codes. Am. J. Civ. Eng. 2024, 12(2), 66-75. doi: 10.11648/j.ajce.20241202.12
AMA Style
Yimer AM. A Comparative Study of Rectangular Beam Depth Effects Under EBCS-1995 and ES EN-2015 Codes. Am J Civ Eng. 2024;12(2):66-75. doi: 10.11648/j.ajce.20241202.12
@article{10.11648/j.ajce.20241202.12, author = {Adal Mengesha Yimer}, title = {A Comparative Study of Rectangular Beam Depth Effects Under EBCS-1995 and ES EN-2015 Codes }, journal = {American Journal of Civil Engineering}, volume = {12}, number = {2}, pages = {66-75}, doi = {10.11648/j.ajce.20241202.12}, url = {https://doi.org/10.11648/j.ajce.20241202.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajce.20241202.12}, abstract = {To achieve structural integrity, serviceability, and economy of buildings, national and international building standards are used for dimensioning and proportioning of structural members. Building codes may be amended due to, the existence of new construction materials, technologies, and structures, and to improve earlier gaps. Ethiopia has experienced three building codes in the last 40 years. Those codes were the Ethiopian Standard Code of Practice, ESCP 1983-1995, Ethiopian Building Code of Standard, EBCS-1995, and the Ethiopian Standard, ES EN 2015. Design code compliance design and supervision of buildings is one of the major ways to achieve the planning, design, construction, service life as well as overall performance of projects. This study is conducted on the depth determination of an interior RC beam with different span and steel grades under EBCS-1995 and ES EN-2015 design codes. The result of this study proves that EBCS 1995 is uneconomical for shear and moment design for longer spans, and preferable for smaller spans, while ES EN 2015 provides smaller serviceable depth and deflection and maintains economical design for longer spans. Construction professionals need to understand the basic purpose of code amendment and should use the new design code as a major design reference and the earlier code accordingly. }, year = {2024} }
TY - JOUR T1 - A Comparative Study of Rectangular Beam Depth Effects Under EBCS-1995 and ES EN-2015 Codes AU - Adal Mengesha Yimer Y1 - 2024/04/29 PY - 2024 N1 - https://doi.org/10.11648/j.ajce.20241202.12 DO - 10.11648/j.ajce.20241202.12 T2 - American Journal of Civil Engineering JF - American Journal of Civil Engineering JO - American Journal of Civil Engineering SP - 66 EP - 75 PB - Science Publishing Group SN - 2330-8737 UR - https://doi.org/10.11648/j.ajce.20241202.12 AB - To achieve structural integrity, serviceability, and economy of buildings, national and international building standards are used for dimensioning and proportioning of structural members. Building codes may be amended due to, the existence of new construction materials, technologies, and structures, and to improve earlier gaps. Ethiopia has experienced three building codes in the last 40 years. Those codes were the Ethiopian Standard Code of Practice, ESCP 1983-1995, Ethiopian Building Code of Standard, EBCS-1995, and the Ethiopian Standard, ES EN 2015. Design code compliance design and supervision of buildings is one of the major ways to achieve the planning, design, construction, service life as well as overall performance of projects. This study is conducted on the depth determination of an interior RC beam with different span and steel grades under EBCS-1995 and ES EN-2015 design codes. The result of this study proves that EBCS 1995 is uneconomical for shear and moment design for longer spans, and preferable for smaller spans, while ES EN 2015 provides smaller serviceable depth and deflection and maintains economical design for longer spans. Construction professionals need to understand the basic purpose of code amendment and should use the new design code as a major design reference and the earlier code accordingly. VL - 12 IS - 2 ER -